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A b s t r a c t T h e r e c o g n i t i o n a b i l i t y o f N -
Furfurylsalicylaldimine (HL) toward various cations (Pb2+,
Hg2+, Ba2+, Cd2+, Ag+, Zn2+, Cu2+, Ni2+, Co2+, K+, Sr2+,
and Na+) has been studied by UV–Vis and fluorescence
spectroscopy. The compound showed highly selective fluo-
rescence signaling behaviour for Zn2+ ions in methanol-water
medium based on CHEF process and is capable of
distinguishing Zn2+ from Cd2+ ion. From single crystal X-
ray analysis it is revealed that a Zn2+ ion binds two ligand
molecules through imine nitrogen and phenolate oxygen
atom.
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Introduction

Much attention has been focused in recent years on the devel-
opment of new chemical sensors for the recognition of heavy
metal ions as well as anionic species [1]. Metal ions play a
vital role in a wide range of chemical and biological processes
[2], yet some of them are potentially toxic. It is indeed

important to detect metal ions for applications in waste man-
agement and environmental toxicology [2]. Although zinc is
only moderately abundant in nature, ranking twenty third of
the elements in the Earth’s crust, it is, however, a omnipresent
and indispensable element in the human body and the second
most abundant transition metal after iron [3]. In total, the adult
human body contains 2–3 g of zinc [4]. For a long period of
time, zinc has been known as an essential trace element, acting
as a structural component of many protein scaffolds (e.g.,
carbonic anhydrase and zinc finger protein) [3, 5]. A consid-
erable amount of zinc at a concentration of several milli-molar
is accumulated in the presynaptic neurons of the brain and
subsequently released when the neurons are active [6]. Thus,
the detection and separation of zinc in a wide range of con-
centrations from nano-to the milli-molar scale is of immense
interest and significance [7]. Furthermore, the greatest and
most important challenge for the detection of zinc appears
from the interference of other transition metal ions, in partic-
ular cadmium ion. Even though a number of techniques like
atomic absorption spectroscopy, inductively-coupled plasma
mass spectrometry and inductively coupled plasma atomic
emission spectroscopy are available for the detection of these
metal ions in food samples, they require tedious procedures
and are also very expensive [8]. Optical signals based on
changes in absorbance or fluorescence is the most frequently
applied technique because of the simplicity of the experimen-
tal methods. A great number of fluorescent sensors have been
designed to detect different kinds of metal ions. For the
fluorescent detection of ions; fluorescence enhancement
“turn-on” is preferable to fluorescence quenching “turn-
off”, because the former reduces the chance of false positive
data by other fluorescent quenchers existing in samples. [9]
Design of a fluorescent probe is generally based on intramo-
lecular charge transfer (ICT) [10], photoinduced electron
transfer (PET) [11], chelation-enhanced fluorescence
(CHEF) [12], metal − ligand charge transfer (MLCT) [13],
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excimer/exciplex formation [14], imine isomerisation [15],
intermolecular hydrogen bonding [16], excited-state intra-
molecular proton transfer [17], displacement approach
[18], and fluorescence resonance energy transfer (FRET)
[19]. In CHEF process, the electron pair is shared by
coordination to a cation. As a result, the redox potential
of the receptor is raised so that the highest occupied
molecular orbital (HOMO) of the receptor becomes lower
in energy than that of the fluorophore [20].

In recent time several chemosenors for zinc ions are
reported in the literature [21–23]. Hsieh et al. reported A
simple Schiff base type fluorescent receptor which ex-
hibits an ‘off–on-type’ mode with high selectivity in the
presence of Zn2+ ion through the formation of a rigid
structure [24]. Another Schiff’s base chemosensor is re-
ported by Li et al. which displays specific recognition to
Zn2+, and especially avoids the interference of Cd2+ when
tested against a range of physiological and environmen-
tally relevant metal ions [25]. Recently Kim et al. report-
ed a simple receptor which could simultaneously detect
three biologically important metal ions (Zn2+ Fe2+ and
Cu2+) in aqueous solution. The sensor could function as
a “turn-on” fluorescence receptor only to Zn2+ ions and
could be successfully applied to the detection of intracel-
lular Zn2+ ion [26].

In this paper, we presentN-Furfurylsalicylaldimine (HL) as
a highly selective fluorescent sensor for Zn2+ ion in CH3OH-
H2O mixture by chelation-enhanced fluorescence (CHEF).
The fluorescence properties and high selectivity of the ligand
for Zn2+ ion over other possible competitive cations were
investigated in detail. The X-ray single crystal structure of
the Zn(II) complex with the ligand is reported.

Experimental

Materials and Physical Measurements

The ligand N-Furfurylsalicylaldimine is prepared as per the
literature method [27]. Furfurylamine (Sigma Aldrich),
salisaldehyde (Merck, India) and zinc acetate dihydrate
(Merck, India) have been used as received. Solution of HL
is prepared in methanol medium. Metal salts such as nitrate of
Na+, Ag+, Ca2+, Sr2+, Ba2+, Co2+, Ni2+, Cu2+, Zn2+, Pb2+,
Cd2+ and chloride salt of Hg2+ were purchased from Merck,
India and have been used as received. Metal salt solutions
were prepared in a phosphate buffer (0.1 M) with KH2PO4

(0.1 M) and Na2HPO4 (0.1 M) solution (pH 7; MeOH:H2O =
9:1, v/v). Buffer capsules were purchased from Merck India.
Absorption and fluorescence spectra are recorded in
Shimadzu 1601 spectrophotometer and Hitachi F-7000 spec-
trofluorimeter respectively.

Determination of the Binding Constant

The binding constant was calculated based on the titration
curve of the HL with metal ions. Binding constant was deter-
mined by a nonlinear least squares fit of the data with the
following equation as referenced elsewhere [30].

y ¼ x=2 � a � b � 1−xð Þ2 þ x � b=2

Where ‘x’ is (I-Io)/(Imax-Io), ‘y’ is the concentration of
metal ion, ‘a’ is the binding constant, and ‘b’ is the concen-
tration of sample. Here (I-I0)/(Imax-I0) is the fluorescence
intensity ratio.

Determination of Fluorescence Quantum Yield

F = area under the emission curve, A = absorbance at the
excitation wave length, n = index of refraction of the solvent.

(error ~ 10 %) [31].

Synthesis of [Zn(L)2]

Zinc(II) acetate.dihydrate (0.2915 g, 1 mmol) was dissolved in
10 ml methanol in a round-bottom flask. Methanolic solution
(10 ml) of HL (0.2010 g, 1 mmol) was added drop-wise with
constant stirring for about 20 min at room temperature. After
that the whole reaction mixture was refluxed for 1 h to get a
greenish-yellow solution. The solution was cooled to room
temperature and filtered. The greenish-yellow filtrate was kept
in air at room temperature for crystallization. After 2 weeks,
pale yellow block shaped single crystals of diffraction quality
were obtained on slow evaporation of the filtrate. Yield 70 %.

X-Ray Crystallography

Data collections of 1 was carried out at 120(2) K on an Oxford
Diffraction Gemini Ultra diffractometer. Cell refinement,
indexing and scaling of the data sets were done with
CrysAlisPro package, Version 1.171.35.10 [32]. The struc-
tures were solved by using the olex2.solve solution
program [33] using the charge flipping algorithm and
refined by the full matrix least-squares method based on
F2 with all observed reflections [34]. The crystallo-
graphic details are listed in table 1.
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Where, ‘x’ and ‘s’ indicate the unknown and standard
solution respectively, φ = quantum yield,

Here φ measurements were performed using anthracene in
ethanol as standard [φ=0.27]

Here, the quantum yield φ was measured by using the fol-
lowing equation,



Results and Discussion

Emission Studies

At first we have investigated the fluorescence properties of the
ligand HL and its fluorescence response to various metal
cations in methanol-water solvent. The ligand itself shows
negligible fluorescence at 443 nm upon excitation at
330 nm, however, fluorescence enhancement is observed
when Zn2+ ion is added to the methanolic solution of the
ligand. The native fluorescence of the ligand is minimal, but

when Zn2+ is added incrementally, fluorescence increases and
reaches a maximum on addition of 300 micro litres Zn2+

solution (concentration, 30μM) at 443 nm (Fig. 1). The inter-
action of the ligand with Zn2+ ion resulted in fluorescence
enhancement, which is attributed to a chelation-enhanced
fluorescence (CHEF) effect. We believe that the zinc ion is
effectively acting as an electrophile which attacks the
electron-rich hydroxyl oxygen atom of the HL to form a rigid
metal complex. The quantum yield of ligand HL remarkably
changed from 0.003 to 0.321 on the formation of the complex

400 450 500 550 600

0

2

4

6

8

10

12

14

16

18

Zn
2+

300 µL

0 µL    

In
te

ns
ity

 (a
.u

)

Wavelength (nm)

0 5 10 15 20 25 30

2

4

6

8

10

12

14

16

18

In
te

n
si

ty
 (

a.
u

)

[ Zn 2+] M

Fig. 1 Fluorescence spectra of
HL in the buffer solution
(MeOH:H2O = 9 : 1, pH=7) in
the presence of increasing
concentration of Zn(NO3)2.
[HL]=2.0×10−5 M and [Zn2+]=
2.0×10−4 M, Excitation at λ=
330 nm. Inset: The fluorescence
intensity at 443 nm vs [Zn2+] μM

-2

0

2

4

6

8

10

12

14

+A
g
+

+B
a
2+

+C
a
2+

+C
d
2+

+C
o
2+

+C
u
2+

+H
g
2+

+N
a
+

+N
i2
+

+P
b
2+

+S
r
2+

+Zn
2+

(I
-I

o) 
(a

.u
)

Fig. 2 Fluorescence intensity changes (I − I0) of free HL (2×10−5 M) at
443 nm in the buffer solution (MeOH:H2 = 9 : 1, pH=7) upon addition of
various metal ions (2×10−4 M). I and I0 denote fluorescence intensity of
HL in the presence and absence of metal ions. Excitation wavelength:
330 nm
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Fig. 3 Fluorescence intensity profile ofHL +Zn2+and in the presence of
various cations (7 equiv. Zn2+ and 3 equiv. other metal cations) in buffer
at pH 7 at room temperature (excitation wave length 330 nm)
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with Zn2+ metal ion, which indicates 107 folds enhancement
in quantum yield.

Ion selectivity is an important property of the fluores-
cence probes. Thus, we evaluated the fluorescent response
of HL with different metal ions, including Ag+, Na+,
Ca2+, Ba2+, Sr2+, Pb2+, Hg2+, Co2+, Ni2+, Cu2+ and Cd2+

in buffer solution and found the perfect selectivity for
Zn2+ with a considerable signal output (Fig. 2). It is worth
noting, that the ligand distinguishes Zn2+ from Cd2+,

which might cause interference since both metal cations
have very similar properties [28].

The existence of other transition metal ions may affect the
detection ability of HL. The Zn2+ selectivity and the fluores-
cence behaviour of HL remain uninterrupted with the pres-
ence of many other metal ions. Compared with some available
Zn2+ sensors, which exhibit some enhancement of the fluo-
rescence for Cd2+ [28], the ligand HL has a selective response
to Zn2+ without the interference of Cd2+ in the buffered
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Fig. 4 Job’s plot for determining
the stoichiometry of HL and Zn2+.
The total concentration ([L] +
[Zn2+]) was 2.0×10−5 M. λex=
330 nm
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solution, whereas, the existence of copper obviously
quenched the fluorescence intensity [28, 29]. (Fig. 3)

We have studied the binding ability of HL towards Zn2+ by
fluorescence titration. A Job’s plot indicates the 1:2 coordina-
tion stoichiometry of Zn2+ with HL (Fig. 4), exhibiting a
binding constant a=4.7×1010M−2, (R2=0.9783) (Fig. 5) from
the theoretical nonlinear square fit of experimental data to a
1:2 binding model. The obtained data indicate a typical CHEF
effect, originating from the coordination of the de-protonated
ligand (L−) through the imine nitrogen and de-protonated
phenolate oxygen atom (Scheme 1). The detection limit of
the HL towards Zn2+ was found to be about 3.2 μM based on
fluorescence titration experiments.

X-ray Crystallography

The crystal structure of the Zn2+ complex of the HL
shows 1:2 binding and a distorted tetrahedral geometry
around Zn2+ is identified. As seen in Fig. 6, an imine
nitrogen atom (N9) from the receptor is at the apex of
the tetrahedral zinc (Zn11) and the phenolate oxygen
atom (O1) of the same receptor molecule is also coor-
dinated to Zn(II). An imine nitrogen (N91) and a phe-
no l a t e oxygen (O11 ) f r om ano the r r e c ep to r
moleculecompletes tetrahedral coordination. Thus the
two receptor molecules are chelated with zinc atom.
The N-Zn-N and O-Zn-O bond angles are 121.29° and
123.04° respectively. The bond lengths and the bond
angles are listed in Table 2.

UV–Vis Spectroscopic Studies

We have also studied the change in absorption behaviour
of the ligand upon binding with Zn2+ ion. As the concen-
tration of Zn2+ was increased, the intensity of the absorp-
tion bands produced by the Zn2+-free ligand at 317 and
256 nm gradually decreased, accompanied by new ab-
sorption bands at 238, 272 and 363 nm produced by the
Zn2+-bound ligand appearing at longer wavelength with
gradual increase in the intensity (Fig. 7). The spectra
obtained during the stepwise addition showed four
isosbestic points indicates a clean conversion of HL into
its corresponding Zn2+ complex. In addition Cu2+, Co2+

and Ni2+ show increased absorption bands at 238, 272 and
363 nm but the intensity is less than Zn2+ indicates that
the ligand is sensitive for Zn2+ which is shown in bar
graph representation (Fig. 8).

Scheme 1 Formation of the complex i.e. [Zn(L)2] (1)

Fig. 6 X-ray structure of
[Zn(L2)] (1)
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Conclusion

In this paper we have studied a sensor for Zn2+ ion. The
thorough investigation of the fluorescence sensing and bind-
ing properties of the ligand HL displays high selectivity
luminescent probe for Zn2+. The increase in emission in the
presence of Zn2+ ion is accounted for by the formation of a
rigid metal-ligand complex. The X-ray crystal structure re-
veals that the Zn(II) complex is mononuclear with distorted
tetrahedral geometry. An 107-fold increase in quantum yield
is identified upon coordination of HL with Zn(II) ion is
attributed as Zn2+-selective chelation-enhanced fluorescence
response.
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